
Strings
Definitions

• Alphabet (Σ)
A a finite set consiting of symbols or characters.

• String
A sequence of symbols drawn from some alphabet Σ.
A string can be empty, denoted by ε

• Σ*
Denotes the set of all possible strings over an alpha-
bet Σ

Functions on a string

• length
|ε| = 0
|100111| = 6

• character occurences
#a(abbaa) = 3

• concatenation
x = good, y = bye
xy = goodbye, yx = byegood
Also, x||y = goodbye (Another notation)
- The empty string ε is the identity of the concatenation.

∀x(xε = εx = x)

- Concatentation is also associative.

∀s, t, w ((st)w = s(tw))

• replication

w0 = ε

wi = wi−1w

a3 = aaa , (bye)2 = byebye , a0b3 = bbb

• reversal
For a string w, the reversal wR is defined as:

if |w| = 0 then wR = w = ε

if |w| ≥ 1 then ∃a ∈ Σ(∃u ∈ Σ∗(w = ua))
then wR = auR

Theorem 2.1

If w and x are strings, then (wx)R = xRwr

Relations on Strings

• substring
A string s is a substring of a string t iff s occurs con-
tiguously as a part of t
A string s is a proper substring of a string t iff s is
a substring of t and s 6= t

• prefix
A string s is a prefix of t iff ∃x ∈ Σ∗(t = sx)
proper prefix again same as above (s 6= t)

• suffix
A string s is a suffix of t iff ∃x ∈ Σ∗(t = xs)
proper suffix again same as above (s 6= t)

Empty string ε is a suffix, prefix and a substring of
every string

Languages
A language is a finite or infinite set of strings over a
fine alphabet Σ.
For a language L defined over alphabet Σ, L ⊂ Σ∗

ΣL is used to denote the alphabet from which the strings
in the language L are formed.

Ways of defining languages

• We can have a language generator that enumer-
ates the elements of the language or have language
recognizer which decides whether or not a candidate
string is in the language and returns True if it is and
False if it isn’t.

• Go through examples on page 11-13 to see dif-
ferent ways languages are defined

• Empty language L = {} =∅ is a language that contains
no strings but a language L = {ε} is not an empty
language as it consists of one element i.e., an empty
string.

• Lexigographic order

– Sometimes we may care about the order in which
the elements of a language are generated in.

– If there exists a total order D then we can use D
to define on L a useful total order called lexico-
graphic order (written <L):

∀x(∀y((|x| < |y|)→ (x <L y)))

and of the strings of the same length, sort them
in dictionary order using D.

Cardinality of a language

• The smallest language over any alphabet is ∅ with
cardinality of 0

• The largest language over any alphabet Σ is Σ∗

• For Σ = ∅, Σ∗ = {ε} and |Σ∗| = 1 theorem 2.2 is for
non-empty alphabets.

Theorem 2.2

If Σ 6= ∅ then Σ∗ is countably infinite (ℵ0) - Therefore, the
cardinality of every language is at least 0 and at most ℵ0

How many languages are there?

• The set of languages defined on Σ is P (Σ∗)
• For Σ = ∅, Σ∗ = {ε} and P (Σ∗) is {∅, ε}
• But when Σ 6= ∅ theorem 2.3 applies.

Theorem 2.3

If Σ 6= ∅ then the set of languages over Σ is uncountably
infinite.

Functions on a language

• Since languages are sets, all of the standard set opera-
tions are well-defined on languages. (refer Ex2.12 from
page 15)

• concatenation
Let L1 and L2 be two languages defined over Σ then:

L1L2 = {w ∈ Σ∗ : ∃s ∈ L1(∃t ∈ Ł2(w = st))}

1

Example
Let L1 = {cat, dog, mouse} and L2 =
{bone, food}

L1L2 = {catbone, catfood, dogbone, dogfood,

mousebone, mousefood}

- The language {ε} is the identity for concatenation of
languages. For all languages L:

L{ε} = {ε}L = L

- The language ∅ is a zero for concatenation of lan-
guages. For all languages L:

L∅ = ∅L = ∅

There are no ways of selecting a string from an empty
set.
- It’s also associative

(L1L2)L3 = L1(L2L3)

• Kleene star
Let L be a language defined over Σ then:

L∗ = {ε} ∪ {w ∈ Σ∗ : ∃k ≥ 1(∃w1, w2, . . . wk ∈ L
(w = w1w2 . . . wk))}

note1

Example:

Let L ={dog, cat, fish}. Then:
L∗ ={ε, dog, cat, fish, dogdog, dogcat,...,

fishdog, fishcat, fishfish,...,

fishcatfish,fishdogfishcat,...}

- L∗ always contains an infinite number of strings as
long as L is not ∅ or {ε}. i.e., as long as there is one
nonempty string in L.
- If L = ∅, then L∗ = {ε} as there are no strings that
could be concatenated to ε to make it longer. This
means that the Kleene star of any language must have
at least ε in it.
- If L = {ε}, then L = {ε} as well.

• reverse Reverse of a language L defined over Σ, written
as LR is:

LR = {w ∈ Σ∗ : w = xR for some x ∈ L}

Theorem 2.4

If L1 and L2 are languages, then (L1L2)R = LR
2 L

R
1

Assigning Meaning to Languages

To be able to use the language and form the framework for
it’s applications we need to assigning meaning to its strings.
Working with formal languages require a precise way to
assign meaning to strings (also called its semantics). -
A function that maps strings to its meanings is called a
semantic interpreation function. But since languages
are infinite, its not, in general possible to map each string

1The part ∃w1, w2, . . . wk ∈ L should mean ‘select k elements from
L’. Each time selecting k elements in a particular permutation and
concatenating them.

with its meaning.
- Instead we define a function in such a way that it identifies
units and can combine those units based on rules to build
meanings for larger expression. We call such a function,
compositional semantic interpretation function
- So this function “composes” the meanings of simpler con-
stituents into a single meaning for a larger expression.
- When we define a formal function to fulfill a specific
purpose, we design it so that there exists a compositional
semantic interpretation function.
- For example there exists a compositional semantic inter-
pretation function for the C programming language, a C
compiler.
- These functions are generally not one-to-one. For example:

• “Chocolate, please”, “I’d like chocolate”, “I’ll have
chocolate” all mean the same

• These also have to same meaning

int x = 4; int x = 4; int x = 4;
x++; x = x --1; x = x + 1;

2

	Strings
	Definitions
	Functions on a string
	Theorem 2.1
	Relations on Strings

	Languages
	Ways of defining languages
	Cardinality of a language
	Theorem 2.2
	How many languages are there?
	Theorem 2.3
	Functions on a language
	Theorem 2.4
	Assigning Meaning to Languages

